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Abstract. A finite expansion of the exponential map for aN × N matrix is presented. The
method uses the Cayley–Hamilton theorem for writing the higher matrix powers in terms of
those for the firstN − 1. The resulting sums over the corresponding coefficients are rational
functions of the eigenvalues of the matrix.

1. Introduction

In the Lie theory of groups and their corresponding algebras the exponential map is a
crucial tool because it gives the connection between a Lie algebra elementH ∈ g and the
corresponding Lie group elementg ∈ G

exp:
g → G
H 7→ g

(for details see [5] and [1, 2] and references therein). In some low-dimensional cases, such
as SU(2) and SO(3), the explicit expansion of the exponential map is known. Some years
ago the exponential map for the Lorentz group was given by Rodrigues and Zeni [8, 9].
For the higher-dimensional groups, SU(2, 2) and O(2, 4), a method for the expansion was
developed by Barutet al [1, 2]. The subject of the present paper is a generalization of the
method developed in [1, 2] to the general linear groups GL(N ). The result will be a method
to calculate the exponential of a quadratic matrixH , where only rational functions of the
eigenvalues ofH and the firstN − 1 powers ofH are involved. The key points are the
Cayley–Hamilton theorem and the introduction of a multiplierm.

The organization of this paper is as follows. First, the method is shown in the low-
dimensional case SU(3) which is a group occurring quite often in physics. Then the general
case of the expansion of the exponential map for aN ×N matrix is presented.

The only real problem that remains is the determination of the eigenvalues of the
matrix H . Throughout the paper we assume that the groups GL(N ) are represented asN -
dimensional matrices and that the eigenvalues ofH are all different if not stated otherwise
(cf section 3.5).

We also consider the case of two equal eigenvalues. Then the method does also apply
but the results become less simple.

Some possible applications of these results will be presented in a future paper.

† E-mail address: alexander.laufer@uni-konstanz.de
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2. The exponential map for the group SU(3)

The group SU(3) is used in several branches of physics. The best known application is
the model of the strong interaction (see e.g. [3]). For this reason and because it is a good
exercise to follow the steps of the general method, we will show the exponential mapping of
SU(3) in great detail. The calculations depend in some points on the fact that we consider
a special group, i.e. the sum over the eigenvalues of the generator vanishes. There is no
conceptional problem to extend the method to U(3). As in the other cases (cf [1, 2]), a
typical elementU ∈ SU(3) can be written as an exponential of the generator

U = eH =
∞∑
n=0

1

n!
Hn with H ∈ su(3). (1)

The Cayley–Hamilton theorem and the iterated form in this case read

H 3 = b0H + c0 and H 3+i = aiH 2+ biH + ci
where the coefficientsb0 andc0 are functions of the eigenvalues of the eigenvaluesx, y, z
of H . They satisfy the recurrence relations

ai+1 = bi bi+1 = aib0+ ci ci+1 = aic0. (2)

Hence the coefficientsai satisfy

ai+1 = ai−1b0+ ai−2c0 (3)

with the first few values

a0 = 0 a1 = b0 a2 = c0 a3 = b2
0 a4 = b0c0.

The explicit form ofb0 andc0 can easily be derived from the secular equation

0= (λ− x)(λ− y)(λ− z)
= λ3− (x + y + z︸ ︷︷ ︸

a0=0

)λ2+ (xy + xz + yz︸ ︷︷ ︸
−b0

)λ− xyz︸︷︷︸
c0

.

The leading coefficienta0 vanishes since the generatorH is traceless, i.e.x + y + z = 0.
The second coefficient can also be written asb0 = 1

2(x
2 + y2 + z2). There are also some

nice relations

b0x + c0 = x3 b0y + c0 = y3 b0z + c0 = z3.

The idea now is to use the Cayley–Hamilton theorem for writing the sum (1) as

U = I3+H + 1

2
H 2+

∞∑
n=0

1

(n+ 3)!
Hn+3

= I3+H + 1

2
H 2+

∞∑
n=0

1

(n+ 3)!
(anH

2+ bnH + cn).

This form contains only the sum over rational functions, there are no longer higher powers
of the generator present. The next step is now to find an analytic expression for the sums
over the coefficients.

A convenient form for the functionsan, bn, andcn can be obtained if we introduce the
multiplier

m = (x − y)(x − z)(y − z) = (x2(y − z)+ y2(z − x)+ z2(x − y)).
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Then we obtain for the group element

mU = m
(
I3+H + 1

2
H 2

)
+
[ ∞∑
n=0

man

(n+ 3)!

]
H 2+

[ ∞∑
n=0

mbn

(n+ 3)!

]
H +

[ ∞∑
n=0

mcn

(n+ 3)!

]
.

It can easily be shown that the following form for the coefficients satisfy the recurrence
relations (2) and (3)

man = (y − z)xn+3+ (z − x)yn+3+ (x − y)zn+3

mbn = (y − z)xn+4+ (z − x)yn+4+ (x − y)zn+4

mcn = yz(y − z)xn+3+ xz(z − x)yn+3+ xy(x − y)zn+3. (4)

The three sums are now[ ∞∑
n=0

man

(n+ 3)!

]
= (y − z) ex + (z − x) ey + (x − y) ez − 1

2
m[ ∞∑

n=0

mbn

(n+ 3)!

]
= x(y − z) ex + y(z − x) ey + z(x − y) ez −m[ ∞∑

n=0

mcn

(n+ 3)!

]
= yz(y − z) ex + xz(z − x) ey + xy(x − y) ez.

Finally, we get the expansion of a SU(3) group element:

mU = [yz(y − z) ex + xz(z − x) ey + xy(x − y) ez]I3

+[x(y − z) ex + y(z − x) ey + z(x − y) ez]H

+[(y − z) ex + (z − x) ey + (x − y) ez]H 2. (5)

2.1. Equal eigenvalues

In the case when some eigenvalues ofH are equal, the multiplierm vanishes. To resolve
this problem we need to find expressions for the solutions of the recurrence relations (2)
which do not involve this multiplier in the original form. What we can do is to rewrite the
solutions (4) with a multiplierm̃ which does not vanish if two eigenvalues are equal.

Without loss of generality, let us consider the case wherex = y. This means that we
should eliminate the terms(x − y) from the multiplierm. As an example, let us take the
expression forman in equation (4):

man = (y − z)xn+3+ (z − x)yn+3+ (x − y)zn+3

= z(yn+3− xn+3)+ xy(xn+2− yn+2)+ (z − y)zn+3

= (x − y)(−z(xn+2+ xn+1y + · · · + yn+2)

+xy(xn+1+ xny + · · · + yn)+ zn+3). (6)

With the definition

m = (x − y)m̃ m̃ = (x − z)(y − z)
we get a solution of the recurrence relations (4):

m̃an = −z(xn+2+ xn+1y + · · · + yn+2)+ xy(xn+1+ xny + · · · + yn)+ zn+3. (7)

If we now look at the casex = y we obtain

m̃an = −(n+ 3)zxn+2+ (n+ 2)xn+3+ zn+3.
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The sum overn of these expressions is easily performed:

∞∑
n=0

m̃an

(n+ 3)!
= (x − z)

∞∑
n=0

xn+2

(n+ 2)!
−
∞∑
n=0

xn+3

(n+ 3)!
+
∞∑
n=0

zn+3

(n+ 3)!

= (x − z − 1) ex + ez − 1

2
(xz)2︸ ︷︷ ︸
m̃

. (8)

For the other two sums the same method works and we find as a result

m̃bn = (n+ 3)(x − z)xn+3− zxn+3+ zn+4 (9)

m̃cn = (n+ 3)(xz − z2)xn+3+ (z2− 2xz)xn+3+ x2zn+3. (10)

The sums are then
∞∑
n=0

m̃bn

(n+ 3)!
= (z2− x2− z) ex + z ez − m̃ (11)

∞∑
n=0

m̃cn

(n+ 3)!
= z(x2− xz − 2x + z) ex + x2 ez − m̃. (12)

If we take into account that we are dealing with a special group we also obtain the relation
z = −2x. Then the final result is

m̃ eH = ((3x − 1) ex + e−2x)H 2+ x((3x + 2) ex − 2 e−2x)H + x2(4(2− 3x) ex + e−2x)I3.

(13)

3. The exponential map of GL(N)

As we have seen in the cases of the groups SU(3) and SU(2, 2) [2] the exponential map can
be written as a sum over the first (N − 1) powers of the generatorH ∈ su(N), where the
coefficients are functions of the eigenvalues ofH . In this section we generalize the results
we have found for the low-dimensional examples. It seems that there is a relatively easy
concept of generalization.

The desired result is an expansion of the exponential map of the form

g = eH =
∞∑
n=0

Hn

n!
=

N−1∑
k=0

AkH
k (14)

where the coefficientsAk are rational functions of the eigenvalues{λi; i = 1, 2, . . . , N} of
the generatorH .

3.1. The secular equation

The first step will be to take a look at the eigenvalues, some auxiliary functions, and their
inter-relations.

Let us consider the secular equation of the matrixH

0=
N∏
i=1

(λ− λi) = −
( N∑
k=0

Ckλ
N−k

)
(15)
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where the coefficientsCk are functions of the eigenvalues ofH . In section 3.5 some
coefficients are listed in their explicit form. For later convenience we also introduce the
‘truncated’ versionC(i)k of the coefficientsCk, defined by∏

j 6=i
(λ− λj ) =: −

N−1∑
k=0

C(i)kλ
N−1−k. (16)

Essentially,C(i)k contain all terms ofCk without λi . The connection between these
coefficients can be seen easily via

N∏
i=1

(λ− λi) = (λ− λ1)

N∏
i=2

(λ− λi) = (λ− λ1)

(
λN−1−

N−1∑
k=1

C(1)kλ
N−1−k

)

= λN + λ1C(1)N−1−
N−2∑
k=0

[C(1)k+1− λ1C(1)k]λ
N−1−k

!= λN −
N−1∑
k=0

Ck+1λ
N−1−k.

Since the calculations above can be generalized to all eigenvalues we have the relations

Ck = C(i)k − λiC(i)k−1 for k = 1, 2, . . . , N − 1

CN = −λiC(i)N−1. (17)

Let us define the multiplierm; i.e. the discriminant of the secular equation

m :=
∏
i<j

(λi − λj ) (18)

and the functions (see also (39))

mi := m(λ1, . . . , λi−1, λi+1, . . . , λN) =
∏
j<k
j,k 6=i

(λj − λk). (19)

In what follows we mainly use the following form ofm which can be obtained by expanding
the Slater determinant (see (35) and (38)):

m =
N∑
i=1

(−1)i+1miλi
N−1. (20)

This formula can be generalized to

mδkl =
N∑
i=1

(−1)imiC(i)k−1λ
N−l
i for k, l = 1, 2, . . . , N. (21)

For the proof see section 3.4.

3.2. Recurrence relations

The described method relies on the Cayley–Hamilton theorem which gives us the ability
to write all powersHN+n for n ∈ N in terms of the firstN − 1 powers ofH . The
Cayley–Hamilton theorem forH ∈ gl(N) reads

HN =
N∑
k=1

CkH
N−k. (22)
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The coefficientsCk are the same as those in the secular equation (15) and satisfy the
recurrence relations (24) derived below. For the special groups, i.e. detg = 1 for g ∈ SL(N)
the first coefficient vanishes since the sum over the eigenvalues is zero.

Multiplication of (22) withHn and using (22) again gives the iterated form

HN+n =
N∑
k=1

CnkH
N−k. (23)

Multiplying once more withH gives

HN+n+1 = (Cn2 + Cn1C1)H
N−1+ (Cn3 + Cn1C2)H

N−2+ · · · + (Cnn+1+ Cn1Cn)HN−n + · · ·
· · · + (CnN + Cn1CN−1)H + Cn1CN

!=
N∑
k=1

Cn+1
k HN−k

and hence we obtain the recurrence relations

Cn+1
1 = Cn2 + Cn1C1 Cn+1

2 = Cn3 + Cn1C2

. . . Cn+1
k = Cnk+1+ Cn1Ck . . .

Cn+1
N−1 = CnN + Cn1CN−1 Cn+1

N = Cn1CN. (24)

If we successively plug inCjk in the recurrence relation ofCn1 we find a formula
which contains only terms withCn1 and the coefficients of the original Cayley–Hamilton
equation (22)

Cn+1
1 =



N∑
j=1

C
n+1−j
1 Cj for n > N − 1

n∑
j=0

C
n−j
1 C1+j +mCn+2 for n < N − 1.

(25)

For the other coefficientsCn+1
k (k = 1, 2, . . . , N) we have analogous formulae

Cn+1
k =



N−k∑
j=0

C
n−j
1 Ck+j for n > N − k

n∑
j=0

C
n−j
1 Ck+j +mCk+n+1 for n < N − k.

(26)

The coefficients of the secular equation have the explicit form

mCk
(20)=

N∑
i=1

(−1)i+1miλ
N−1
i Ck

(17)=
N∑
i=1

(−1)i+1miλ
N−1
i (C(i)k − λiC(i)k−1)

= −
N∑
i=1

(−1)i+1miλ
N
i C(i)k−1+

N∑
i=1

(−1)i+1miλ
N−1
i C(i)k︸ ︷︷ ︸

=0 for k 6=0
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where we have applied equation (43) to the second term in the last equation. We will need
this form as first values in the proof of equation (30):

mCk =
N∑
i=1

(−1)imiλ
N
i C(i)k−1 for k = 1, 2, . . . , N. (27)

From the SU(3) and SU(2, 2) cases one may assume that the recurrence relation (25) has
the solution

mCn1 =
N∑
i=1

(−1)i+1miλ
N+n
i . (28)

Proof. The proof of equation (28) is shown by induction overn.
The first coefficient (n = 0) is given by

mC1 =
N∑
i=1

(−1)i+1miλ
N
i (29)

which is easy to prove if one writesC1 in the form

C1 =
N∑
j=1

λj = λi +
∑
j 6=i

λj = λi + C(i)1.

For the productmC1 we takem in the form of equation (38),

mC1 =
N∑
i=1

(−1)i+1miλ
N−1
i (λi + C(i)1)

=
N∑
i=1

(−1)i+1miλ
N
i +

N∑
i=1

(−1)i+1miC(i)1λ
N−1
i︸ ︷︷ ︸

=0

.

The last equation holds since the exponent ofλi should beN − 2 in order to yield a
non-vanishing sum (see equation (43)).

First we treat the case ofn > N . The next step is to assume the validity of (28) forn
and to show that then it follows also forn+ 1:

mCn+1
1

(25)=
N∑
j=1

mC
n+1−j
1 Cj

(28)=
N∑
j=1

N∑
i=1

(−1)i+1miλ
N+n+1−j
i Cj

(17)=
N∑
j=1

N∑
i=1

(−1)i+1miλ
N+n+1−j
i (C(i)j − λiC(i)j−1)

=
N∑
i=1

(−1)i+1mi

( N∑
j=1

C(i)jλ
N+n+1−j
i −

N∑
j=1

C(i)j−1λ
N+n+2−j
i

)

=
N∑
i=1

(−1)i+1mi

( N+1∑
j=2

C(i)j−1λ
N+n+2−j
i −

N∑
j=1

C(i)j−1λ
N+n+2−j
i

)

=
N∑
i=1

(−1)i+1mi

(
C(i)N︸ ︷︷ ︸
=0

λn+1
i − C(i)0︸︷︷︸

=−1

λN+n+1
i

)

=
N∑
i=1

(−1)i+1miλ
N+n+1
i = mCn+1

1 .
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In the case ofn < N − 1 there is an additional term

mCn+1
1 =

n∑
j=0

mC
n−j
1 C1+j +mCn+2 = · · ·

=
N∑
i=1

(−1)i+1mi(C(i)n+1λ
N
i − C(i)0λN+n+1

i )+mCn+2

=
N∑
i=1

(−1)i+1miλ
N+n+1
i +

N∑
i=1

(−1)i+1miC(i)n+1λ
N
i︸ ︷︷ ︸

=−mCn+2

+mCn+2

(27)=
N∑
i=1

(−1)i+1miλ
N+n+1
i .

�
The coefficientsCnk can be written in the form

mCnk =
N∑
i=1

(−1)imiC(i)k−1λ
N+n
i for k = 1, . . . , N. (30)

Proof. The proof is analogous to the one formCn1 but uses the explicit form (28) of these
coefficients:

mCn+1
k =

N−k∑
j=0

mC
n−j
1 Ck+j

(28)=
N−k∑
j=0

N∑
i=1

(−1)i+1miλ
N+n−j
i Ck+j

(17)=
N−k∑
j=0

N∑
i=1

(−1)i+1mi(C(i)k+j − λiC(i)k+j−1)λ
N+n−j
i

=
N−k∑
j=0

N∑
i=1

(−1)i+1miC(i)k+jλ
N+n−j
i

−
N−k∑
j=1

N∑
i=1

(−1)i+1miC(i)k + j − 1λN+1+n−j
i −

N∑
i=1

(−1)i+1miC(i)k−1λ
N+n+1
i .

If we now shift the summation indexj in the second sum most of the terms cancel with
those of the first sum. The remaining termj = N − k in the first sum containsC(i)N = 0
and, hence, vanishes also. Therefore, only the third sum remains to proof the assumed
form (30) ofCnk .

Again there are the casesn < N − k which need to be treated separately:

mCn+1
k =

N−k∑
j=0

mC
n−j
1 Ck+j +mCk+n+1 = · · ·

=
N∑
i=1

(−1)imiC(i)k−1λ
N+n+1
i +

N∑
i=1

(−1)i+1miC(i)k+nλNi︸ ︷︷ ︸
=−mCk+n+1(27)

+mCk+n+1

=
N∑
i=1

(−1)imiC(i)k−1λ
N+n+1
i .

�
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3.3. The exponential map

The expansion of a group elementg ∈ G with generatorH ∈ gl(N) can now be written as

g = eH

=
∞∑
n=0

Hn

n!

=
N−1∑
n=0

Hn

n!
+
∞∑
n=0

HN+n

(N + n)!

=
N−1∑
n=0

Hn

n!
+
∞∑
n=0

1

(N + n)!
( N∑
k=1

CnkH
N−k

)
. (31)

Using the multiplierm we get

mg = m
N−1∑
n=0

Hn

n!
+

N∑
k=1

[ ∞∑
n=0

1

(N + n)!mC
n
k

]
HN−k. (32)

We can now treat the sums for differentk separately:

∞∑
n=0

1

(N + n)!mC
n
k =

∞∑
n=0

1

(N + n)!
N∑
i=1

(−1)imiC(i)k−1λ
N+n
i

=
N∑
i=1

(−1)iC(i)k−1mi

∞∑
n=0

1

(N + n)! λ
N+n
i

=
N∑
i=1

(−1)iC(i)k−1mi

(
eλi −

N−1∑
n=0

λni

n!

)

=
N∑
i=1

(−1)iC(i)k−1mi eλi+
N−1∑
n=0

1

n!

N∑
i=1

(−1)i+1C(i)k−1miλ
n
i

=
N∑
i=1

(−1)iC(i)k−1mi eλi − m

(N − k)! .

The last equation relies on equations (42) and (43). The terms−m/(N−k)! cancel the first
sum in equation (32).

The final result turns out to be

m eH = (−1)NdetH

( N∑
i=1

(−1)imi
eλi

λi

)
IN +

( N∑
i=1

(−1)iC(i)N−2mi eλi
)
H + · · ·

· · · +
( N∑
i=1

(−1)iC(i)kmi eλi
)
HN−1−k + · · ·

· · · +
( N∑
i=1

(−1)imiλi eλi
)
HN−2+

( N∑
i=1

(−1)i+1mie
λi

)
HN−1

or in closed form

m eH =
N∑
n=1

( N∑
i=1

(−1)iC(i)n−1mi eλi
)
HN−n (33)
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which reads in terms of the adjoints of the Slater determinant

m eH =
N−1∑
n=0

( N∑
i=1

A(i)n eλi
)
Hn. (34)

3.4. The Slater determinant

One crucial ingredient of the method is the usage of a multiplierm, defined in equation (18).
From low-dimensional examples one may assume the forms (20) and (21) ofm. The general
proofs can be performed by writingm as a Slater determinant. The Slater determinant is
defined as (cf [6])∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
λN λN−1 . . . λ1

λ2
N λ2

N−1 . . . λ2
1

...
...

. . .
...

λN−1
N λN−1

N−1 . . . λN−1
1

∣∣∣∣∣∣∣∣∣∣
=
∏
i<j

(λi − λj ) = m. (35)

We can now use the Laplacian method of expanding the Slater determinant

detA =
n∑
j=1

aijAij =
n∑
i=1

aijAij (36)

where the so-called adjointsAij are the subdeterminants ofaij multiplied by the sign factor
(−1)i+j .

It is also well known that the Laplace expansion with ‘wrong’ adjoints gives zero

0=
n∑
j=1

aijAlj for l 6= i. (37)

The Laplacian method applied with respect to the last row then gives the expansion (20),

m =
N∑
i=1

λN−1
i A(N+1−i)N =

N∑
i=1

(−1)N+(N+1−i)miλN−1
i =

N∑
i=1

(−1)i+1miλ
N−1
i (38)

wheremi are the subdeterminants ofm

mi =
∏
k<j
k,j 6=i

(λk − λj ). (39)

We have

m = mi
∏
k<i

(λk − λi)
∏
i<j

(λi − λj ) for i = 1, 2, . . . , N

= (−1)i−1mi
∏
j 6=i
(λi − λj )

(16)= (−1)i−1mi

N−1∑
n=0

(−C(i)nλN−1−n
i )

=
N−1∑
n=0

(−1)imiC(i)N−1−nλni
(36)=

N−1∑
n=0

A(i)nλ
n
i (40)
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which proves equation (42). Also equation (43) is proven since if the exponent ofλi is not
n the sum vanishes because it is an expansion with the ‘wrong’ adjointsA(i)n. Hence, we
get an explicit expression for the adjoints

A(i)n = (−1)imiC(i)N−n−1. (41)

We can also expandm with respect to the(n+ 1)th line and then use equation (41):

m =
N∑
i=1

A(i)nλ
n
i for n = 0, 1, . . . , N − 1

=
N∑
i=1

(−1)imiC(i)N−1−nλni . (42)

Writing the Laplacian expansion with ‘wrong’ adjoints leads to

0=
N∑
i=1

A(i)kλ
n
i for k, n = 0, 1, . . . , N − 1, k 6= n

=
N∑
i=1

(−1)imiC(i)N−1−kλni . (43)

Ergo (cf equation (21))

mδkl =
N∑
i=1

(−1)imiC(i)k−1λ
N−l
i for k, l = 1, 2, . . . , N. (44)

3.5. Case of two equal eigenvalues

In the cases where some of the eigenvalues coincide, the multiplierm will be zero. However,
in these casesm can be chosen in a simpler non-vanishing form.

Here we show how the recurrence relations (26) can be solved if two eigenvalues of the
generalgl(N) matrixH are equal. It is a straightforward generalization of the calculations
of the case for SU(3).

Let us assume that the two eigenvaluesλ1 andλ2 will become equal. As in the previous
(N = 3) case we shall try to extract the factor (λ1 − λ2) from the solutions (30) of the
recurrence relations (26). Then we can use a multiplierm̃ which does not contain the later
vanishing factor (λ1− λ2).

Let us first consider the coefficientsCn1 . The new multipliersm̃ and m̃i are defined to
be

m = (λ1− λ2)m̃ and mi = (λ1− λ2)m̃i .

Starting from equation (28) we extract (λ1− λ2) from Cn1 :

mCn1 =
N∑
i=1

(−1)i+1miλ
N+n
i

=
(
λN+n1

N∏
k=3

(λ2− λk)− λN+n2

N∏
k=3

(λ1− λk)
) N∏

36k<l
(λk − λl)

+(λ1+ λ2)

N∑
i=3

(−1)i+1m̃iλ
N+n
i
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=
[ N−2∑
l=0

al(λ
N+n
1 λl2− λl1λN+n2 )

] N∏
36k<l

(λk − λl)

+(λ1+ λ2)

N∑
i=3

(−1)i+1m̃iλ
N+n
i = (λ1− λ2)

[ N∑
i=3

(−1)i+1m̃iλ
N+n
i

+
( N−2∑

l=0

alλ
l
1λ
l
2

N+n−1−l∑
k=0

λN+n−1−l−k
1 λk2

) N∏
36l<m

(λl − λm)
]

(45)

where
∏N
k=3(λ− λk) :=∑N−2

l=0 alλ
l .

In the equation above we can cancel the factor (λ1 − λ2). Hence we can setλ1 = λ2

without getting a vanishing multiplier̃m. Now we obtain

m̃Cn1 =
N∑
i=3

(−1)i+1m̃iλ
N+n
1 +

( N−2∑
l=0

alλ
2l
1 (N + n− l)λN+n−1−l

1

) N∏
36l<m

(λl − λm)

=
N∑
i=3

(−1)i+1m̃iλ
N+n
i +

(
∂

∂λ2
λN+n2

)
m1− λN+n2

∂

∂λ2
m1. (46)

For the other coefficientsCnK the corresponding calculations are more involved. Again we
start from the solution (30) of the recurrence relations

mCnk = −m1C(1)k−1λ
N+n
1 +m2C(2)k−1λ

N+n
2 +

N∑
i=3

(−1)1miC(i)k−1λ
N+n
i .

Now we need to find a relation between the two series of factorsC(1)k andC(2)k. Useful
relations can be derived by looking at

∏
j 6=i
(λi − λj ) = −

N−1∑
k=0

C(i)kλ
N−1−k
i for i = 1, 2

= (−1)i+1(λ1− λ2)

N∏
l=3

(λi − λj )︸ ︷︷ ︸
=:
∑N−2

l=0 Blλ
N−2−l
i

. (47)

With some arrangements of the sums we obtain the desired relations

C(2)k = (λ1− λ2)Bk−1+ C(1)k for k = 1, . . . , N − 1

C(1)0 = C(2)0 = B0.

Using these relations and cancelling the factor (λ1− λ2) we get

m̃Cnk =
N∑
i=3

(−1)im̃iC(i)k−1λ
N+n
i −C(1)k−1

[ N−2∑
l=0

alλ
l
1λ
l
2

N+n−1−l∑
k=0

λN+n−1−l−k
1 λk2

] N∏
36k<l

(λk−λl)

+Bk−2λ
N+n
2

N∏
l=3

(λ1− λl)
N∏

36k<l
(λk − λl).
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Now we setλ1 = λ2 and eliminate all occurrences ofλ1. This results in

m̃Cnk =
N∑
i=3

(−1)im̃iC(i)k−1λ
N+n
i − C(1)k−1

[ N−2∑
l=0

alλ
2l
2 (N + n− l)λN+n−1−l

2

]

×
N∏

36k<l
(λk − λl)+ Bk−2λ

N+n
2

N∏
26k<l

(λk − λl)

=
N∑
i=3

(−1)im̃iC(i)k−1λ
N+n
i + Bk−2m1λ

N+n
2

−C(1)k−1m1
∂

∂λ2
λN+n2 + C(1)k−1λ

N+n
2

∂

∂λ2
m1. (48)

This equations holds of course for an arbitrary pair of eigenvalues. If there are more equal
eigenvalues ofH an analogous method can be used to obtain solutions of the recurrence
relations, but the calculations and formulae become rather lengthy. If there are more pairs
of equal eigenvalues we immediately have the results, but if more than two eigenvalues are
equal the calculations becomes nasty. Some of the terms used above have the explicit form

m̃ =
N∏
k=3

(λ1− λk)
N∏

26k<l

N∏
26k<l

(λk − λl)

m̃i =
N∏
k=3
k 6=i

(λ1− λk)
N∏

26k<l
k,l 6=i

(λk − λl) i = 3, . . . , N.

4. Conclusion

The method developed here to exponentiate a matrix can also be applied to other convergent
power-series expansions of matrix functionsf (H). Obviously, the final result can be
obtained by replacing eλi by f (λi) in equation (33). These results are similar to those
obtained by the Lagrange–Sylvester interpolation (cf [4]).

The considered problem of exponentiating a matrixA is not only interesting by itself but
has a wide range of applications. The most prominent one is the fact that the exponential
exptA is a solution of the first-order differential equationẋ(t) = Ax(t). The possibility
to describe finite transformations and to expand explicitly the Hausdorff formula is also
important.
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Appendix A. Some details

This section contains explicit forms of some coefficients and some proofs. Almost all of
the equations hold in the general case, but those which hold only in the case of the special
groups, i.e. vanishing sum of eigenvalues, are denoted by the sign

s=.
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For the coefficients of the secular equation we obtain, for example,

CN = (−1)N+1
N∏
i=1

λi = (−1)N+1 detH

CN−1 = (−1)N
N∑
i=1

∏
j 6=i

λj = (−1)N
N∑
i=1

detH

λi

C2 = (−1)
∑
i<j

λiλj
s= 1

2

N∑
k=1

λk
2

C1 =
N∑
i=1

λi
s= 0 C0 = −1. (49)

Some ‘truncated’ coefficients are

C(i)N−1 = (−1)N−2
∏
j 6=i

λj = (−1)N
detH

λi

C(i)N−2 = (−1)N−3
∑
k 6=i

∏
j 6=k,i

λj

C(i)2 = (−1)
∑
j<k
j,k 6=i

λjλk C(i)1 =
∑
j 6=i

λj
s=−λi

C(i)0 = −1 C(i)N = 0.

Appendix B. Additional checks

B.1. One-dimensional subgroups

One-dimensional subgroups (cf [5]) of GL(N ) can be generated by

{etH ;H ∈ gl(N), t ∈ R}. (50)

From the known expansion of eH we can derive the expansion of etH by multiplying
the occurring expressions by an appropriate factor. Obviously, the eigenvalues of thet-
dependent generatortH are tλi if the λi are the eigenvalues ofH . Therefore, we need to
make the replacements

λi −→ tλi

Ck → tkCk C(i)k → tkC(i)k

m→ tN(N−1)/2m mi → t (N−1)(N−2)/2mi.

The expansion (34) now reads

tN(N−1)/2m etH =
N−1∑
n=0

( N∑
i=1

(−1)i tn−1C(i)n−1t
(N−1)(N−2)/2mi etH

)
(tH)N−n

= tN(N−1)/2
N−1∑
n=0

( N∑
i=1

(−1)iC(i)n−1mi etH
)
HN−n

or

m etH =
N−1∑
n=0

( N∑
i=1

(−1)iC(i)n−1mi etH
)
HN−n. (51)
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Differentiation of the right-hand side of equation (51) and settingt = 0 gives the derivation
of the unit element

N−1∑
n=0

( N∑
i=1

(−1)iC(i)n−1miλi︸ ︷︷ ︸
mδn,N−1(cf(21))

)
HN−n = mH.

Since this result coincides with the one we obtain by differentiating the left-hand side, it is
an additional proof of the expansion (33).

B.2. Eigenvalues

It is easy to demonstrate that equation (34) also gives the right connection between the
eigenvalues of the generatorH and those for the corresponding group elementg = eH . Let
xi be the eigenvectors ofH with eigenvaluesλi

Hxi = λixi for i = 1, 2, . . . , N.

For the powers ofH we get

Hnxi = λni xi for n ∈ N.
Plugging this in equation (33) yields

m eHxj =
N−1∑
n=0

( N∑
i=1

A(i)n eλi
)
Hnxj =

N−1∑
n=0

N∑
i=1

A(i)n eλi λnj xj

=
N∑
i=1

( N−1∑
n=0

A(i)nλ
n
j︸ ︷︷ ︸

mδij (cf(21)

)
eλi xj = meλj xj .

Therefore, we obtain the desired result

gxj = eλj xj

which again confirms the expansion (33).

Remark. After finishing this work I became aware of a recent paper of Kusnezov [7]
on the exact matrix expansion for SU(N ). He uses a different method which involves a
differential equation and derivatives of the eigenvalues with respect to the group parameters.
The present method avoids derivatives and uses only simple calculations. For details see
[7].
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